打赏

相关文章

RaNER模型联邦学习:隐私保护下的实体识别

RaNER模型联邦学习:隐私保护下的实体识别 1. 引言:隐私敏感场景下的命名实体识别挑战 随着自然语言处理技术的广泛应用,命名实体识别(Named Entity Recognition, NER)已成为信息抽取、知识图谱构建和智能客服等系统的…

Qwen3-VL能否识别古代文字?OCR扩展功能实测教程

Qwen3-VL能否识别古代文字?OCR扩展功能实测教程 1. 引言:从现代OCR到古代文字识别的挑战 在数字化古籍、文物档案和历史文献的过程中,光学字符识别(OCR)技术一直是关键环节。然而,传统OCR系统大多针对现代…

AI实体识别实战:RaNER模型与知识图谱集成

AI实体识别实战:RaNER模型与知识图谱集成 1. 引言:AI 智能实体侦测服务的工程价值 在信息爆炸的时代,非结构化文本数据(如新闻、社交媒体、企业文档)占据了数据总量的80%以上。如何从中高效提取关键信息,…

科研文献信息提取:AI智能实体侦测服务学术应用案例

科研文献信息提取:AI智能实体侦测服务学术应用案例 1. 引言:科研场景中的信息抽取挑战 在当前人工智能与大数据深度融合的背景下,科研工作者面临海量非结构化文本数据的处理压力。尤其是在文献综述、知识图谱构建、领域术语挖掘等任务中&am…

RaNER模型部署优化:提升中文实体识别服务稳定性

RaNER模型部署优化:提升中文实体识别服务稳定性 1. 背景与挑战:AI 智能实体侦测服务的工程落地瓶颈 在自然语言处理(NLP)的实际应用中,命名实体识别(Named Entity Recognition, NER)是信息抽取…

中文命名实体识别模型微调:RaNER实战指南

中文命名实体识别模型微调:RaNER实战指南 1. 引言:AI 智能实体侦测服务的现实需求 在信息爆炸的时代,非结构化文本数据(如新闻、社交媒体、文档)占据了企业数据总量的80%以上。如何从这些杂乱无章的文字中快速提取出…

零基础玩转AMS1117-3.3:从焊接到手电筒供电

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个面向初学者的AMS1117-3.3教学项目:1) 元件识别与焊接指导 2) 用面包板搭建测试电路 3) 万用表测量教学 4) 制作USB转3.3V适配器 5) 常见问题解答。输出步骤详细…

手机版浏览

扫一扫体验

微信公众账号

微信扫一扫加关注

返回
顶部