打赏

相关文章

BERT语义填空服务SLA保障:高可用架构设计与容灾演练

BERT语义填空服务SLA保障:高可用架构设计与容灾演练 1. 什么是BERT智能语义填空服务 你有没有遇到过这样的场景:写文案时卡在某个成语中间,想不起后两个字;审校材料发现句子语法别扭,却说不清问题在哪;又…

升级Qwen3-Embedding后,搜索响应快多了

升级Qwen3-Embedding后,搜索响应快多了 最近在做语义搜索系统的优化时,我尝试将原本使用的文本嵌入模型升级为 Qwen3-Embedding-0.6B。结果出乎意料:不仅部署过程非常顺利,而且在实际测试中,搜索响应速度明显提升&…

Open-AutoGLM办公自动化实践:WPS文档自动生成

Open-AutoGLM办公自动化实践:WPS文档自动生成 TOC 1. 引言:让AI帮你写报告,真的可以这么简单? 你有没有这样的经历? 临近下班,领导突然发来消息:“明天上午十点前把项目总结报告发我。” 你心…

亲测Cute_Animal_Qwen镜像:生成可爱动物图片效果惊艳

亲测Cute_Animal_Qwen镜像:生成可爱动物图片效果惊艳 最近在尝试一些适合儿童内容创作的AI工具时,偶然发现了 Cute_Animal_For_Kids_Qwen_Image 这个镜像。名字听起来就很“萌”——基于阿里通义千问大模型打造,专为生成可爱风格动物图片而设…

PyTorch-2.x镜像结合Flair做NER,全流程实操分享

PyTorch-2.x镜像结合Flair做NER,全流程实操分享 1. 环境准备与镜像优势解析 1.1 镜像核心特性一览 我们本次使用的镜像是 PyTorch-2.x-Universal-Dev-v1.0,这是一个为通用深度学习任务量身打造的开发环境。它基于官方最新稳定版 PyTorch 构建&#xf…

Qwen3-Embedding-4B调用实例:openai兼容接口详解

Qwen3-Embedding-4B调用实例:openai兼容接口详解 1. Qwen3-Embedding-4B介绍 Qwen3 Embedding 模型系列是 Qwen 家族中专为文本嵌入和排序任务打造的最新成员,基于强大的 Qwen3 系列基础模型构建。该系列覆盖了从 0.6B 到 8B 的多种参数规模&#xff0…

Qwen2.5-0.5B多场景测试:办公/教育/客服应用实测

Qwen2.5-0.5B多场景测试:办公/教育/客服应用实测 1. 小模型也能大作为:为什么选Qwen2.5-0.5B? 你可能已经习惯了动辄7B、13B甚至更大的大模型,觉得“小模型能力弱”。但今天我们要挑战这个认知——Qwen2.5-0.5B-Instruct&#x…

手机版浏览

扫一扫体验

微信公众账号

微信扫一扫加关注

返回
顶部